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 Data quality control for peptide identification 

in shotgun proteomics

 Evaluation of the effects of decoy design, 

search strategy, and mass tolerance on the 

accuracy and sensitivity of peptide 

identifications in shotgun proteomics



Data quality control for peptide 

identification in shotgun proteomics 



Analyze complex protein mixtures

using shotgun proteomics

Mol Cell Proteomics. 

2005, 4(10):1419-40
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• Simplify MS/MS 

sequencing

• Simplify sample handling 

and increase the overall 

data throughput

• Lost connectivity between 

peptides and proteins

• Complicate computational 

analysis and biological 

interpretation

Quality control in data 

analysis process

Shotgun proteomics for peptide and protein identification 



Our focus
• Our group has been systematically studying the validation of 

database search results identified by shotgun proteomics.

– A new strategy to filter out false positive identifications of peptides in 

SEQUEST database search results. Proteomics. 2007 19;7(22):4036-44.

– A nonparametric model for quality control of database search results in 

shotgun proteomics. BMC Bioinformatics 2008, 9:29.

– Mass measurement errors of Fourier-transform mass spectrometry (FTMS): 

distribution, recalibration, and application. J Proteome Res. 2009 

Feb;8(2):849-59.

– Bayesian nonparametric model for the validation of peptide identification in 

shotgun proteomics. Mol. Cell. proteomics. 2009, 8(3): 547-57.

– Combination of new features improves peptide identification by Mascot in 

shotgun proteomics. (Proteomics, accepted) 

• Make use of available features which were typically ignored could 

benefit data analysis process.

• Combination of new features with an appropriate framework can 

improve the sensitivity of the filtration methods.
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Mass measurement errors of Fourier-transform 

mass spectrometry (FTMS): distribution, 

recalibration, and application

• Conducted a comprehensive investigation of the 

distribution of precursor ion mass error for the LTQ-FT 

platform;

• Developed an automatic GUI software tool, FTDR, for the 

recalibration of LTQ-FT MS data;

• Proposed and applied a new strategy LDSF to recalibrate 

the MS/MS data and improve peptide identification.



Improve the mass recalibration of FTMS data 

• An improved recalibration formula:

etdfTICcfbfazm t  */* /// 22

• FTDR，Fourier-

transform data 

recalibration

– An automated, multi-

thread program

– SEQUEST*.out and 

Mascot *.htm

– Thermo *.RAW format, 

mzXML, or mzData



LDSF - Large MET database search followed by 
small MET filtration

• A new strategy to 

determinate the database 

search MET and validate 

the database search 

results

– A large MET database 

search

– Estimate the statistical 

MET 

– Recalibrate mass errors

– Filter all the database 

search results with the 

statistical MET

}

Raw Data

Select High Confidence

Matches

MS/MS Data

The calibration model

Filter the results

Identified Peptides
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Robust mass error distribution fitting

and deterimnation the statistical MET

Recalculte the mass errors

Recalculte the

mass errors

Other Filtration

Rough filter criteria

Score>25

Rank<=2

Miss<=2

.......

Mascot
+1 XCorr>1.5

+2 XCorr>2.0

+3 XCorr>2.5

deltCn>0.2

......

SEQUEST



LDSF can improve the sensitivity of the result 

validation procedure

• The database search scores become more powerful in 

distinguishing the peptide identifications and thus improve the 

sensitivity of the cutoff-based method.

FDR=0.05 FDR=0.01

MET=2ppm
MET=3.0Da

(2ppm filter)

Sensitivity=71.7% Sensitivity=85.4%

The preserved regions of the database search results of the control protein data set 

using mass calibration with small-MET (left) and large-MET (right) strategies.

LDSF
14％ more

Normal



LDSF can increase the validated peptide number

• Using LDSF strategy, we observed 10,920 validated peptides; 

this was 14.3% more than for the small MET database search, 

which yielded 9,550 validated assignments.

Filter by Statistical MET
              ~2ppm

Calibration + 2 ppm MET
              38326

Decoy Matches
  16234 (42.36%)

Normal Matches
 22092 (57.64%)

Other: 9130
  ( 41.33%)

Control: 12962
     (58.67%)

Validate by Cutoff
 Based Method
(FDRExp=0.01)

Confirm

256 9294

Calibration + 3.0 Da MET
               39745

Decoy Matches
  16571 (41.69%)

Normal Matches
 23174 (58.31%)

Other: 9397
  ( 40.55%)

Confirm

324

Control: 13777
     (59.45%)

10596

Validate by Cutoff
 Based Method
(FDRExp=0.01)

Same Matches
       11663

J Proteome Res. 2009 Feb;8(2):849-859.



Improvements of the filter methods of 

peptide identification in SEQUEST 

database search results

• A new strategy to filter out false positive identifications of 

peptides in SEQUEST database search results

• A nonparametric model for quality control of database 

search results in shotgun proteomics

• Bayesian nonparametric model for the validation of 

peptide identification in shotgun proteomics



Peptide identified by SEQUEST

• Without any filtering, there would be many false positive 

assignments within the results of SEQUEST. (J Am Soc Mass Spectrum. 

2002, 13(4):378-386. Anal. Chem. 2002, 74(21):5593–5599. Mol Cell Proteomics. 2004, 9(4):173~181.)

• Many works on the validation of SEQUEST database search 

results have been published, but each has its own shortage.
– Empirical cut-off based method

• Lack appropriate statistical foundations and good explanations

– Probability models based methods

• PeptideProphet

– Machine learning models methods 

• Depend intensively on the quality of the selected characters as well as 

training set composition.

– Randomized database based methods

• It evaluate the quality of resulting dataset as a whole, which could not 

detect the accuracy of each assignment



A new strategy to filter out false positive 

identifications of peptides in SEQUEST 

database search results

• Based on the randomized database method, a linear 

discriminant function (LDF) model is proposed to filter out 

false positive matches in SEQUEST database search 

results.

• The LDF model takes into account the dynamic tradeoff 

between Xcorr and ΔCn through the use of a filtering 

boundary: ΔCn = k (b-Xcore). 

• The coefficients (k, b) pairs are determined by keeping 

the FDR fixed and maximizing the number of normal 

database matches after filtration.



The filter boundaries derived from the 

LDF model

• The filtration was 

applied to the +1, +2, 

and +3 charge state 

data respectively

• The red and blue points 

are the normal and 

randomized database 

matches

• The red and blue line is 

the LDFs at FDR of 0.05 

and 0.01.



Comparing preserving regions on Xcorr–

ΔCn plane determined by three filtering 

methods

• The LDF model 

gives the largest 

acceptance regions

– A, B, C, D, E, and a 

small unlabeled 

triangle in the 

center.

• Method 1: fixed ΔCn

– C, D, and G.

• Method 2: optimal 

Xcorr and ΔCn

– B, C, and F. 

Proteomics. 2007 19;7(22):4036-4044.



A nonparametric model for quality control of 

database search results in shotgun 

proteomics

• The nonparametric model uses the nonparametric density 

estimation technique to estimate the distribution of the 

database search scores and takes the contour lines as the 

candidate discriminant functions to filter out false positive 

results.

– More flexible: the number and nature of the parameters are 

not fixed in advance.

– More accurate: the distribution of multiple parameters can 

be fit directly with considerable accuracy.

– More sensitive: this nonparametric statistical technique is a 

powerful tool for tackling the complexity and diversity of 

datasets in shotgun proteomics.



Nonlinear filter boundaries on Xcorr–ΔCn plane  

by nonparametric model

• Inferred filter boundaries for different charge state observations in the 
control dataset. The red and green curves are the filter boundaries for 
FPR = 0.01 and for FPR = 0.05, respectively.



Performing classification in a high-dimension 
feature space

BMC Bioinformatics 2008, 9:29.

• The nonparametric model 

can provide greater 

discriminating power by 

incorporating more features

– Xcorr, △Cn and SimScore

• Comparison of the confirmed 
matches among different method

– M1, cutoff-based method

– M2, peptideProphet

– M3, nonparametric model

• The nonparametric model has the 
highest sensitivity 



Bayesian nonparametric model for the 

validation of peptide identification in shotgun 

proteomics

• If too many parameters are used, the nonparametric 
model will encounter a computational problem.

• We developed a Bayesian nonparametric model (BNP) to 
filter the false positive matches in shotgun proteomics 
database searching.

– Integrate a large number of features

– Model the probability structure from the target–decoy database 
search results, and automatically classify the results

– High power to separate correct from incorrect assignments

– Greatly increase the number of confirmed peptides and proteins.



Workflow of Bayesian nonparametric model



Comparison of four filter methods on control data sets  

The sensitivity of the BNP model surpassed 
that of three other filter methods

• Under the 1% expected FDR, the BNP model validated 
about 5% ~ 36% more peptides than other methods.

a D1: LCQ control dataset; D2: LTQ control dataset; D3: LTQ/FT control dataset
b M1: Cutoff-based method; M2: PeptideProphet; M3: BNP model; M4: Nonparametric model.

Dataseta Methodb

Expected FDR = 5% Expected FDR = 1%

Actual

FPR (%)
Total/Correct

Sensitivity

(%)

Actual

FPR (%)
Total/Correct

Sensitivity

(%)

D1

M1 2.23 719/703 78.29 0.53 567/564 62.81

M2 2.59 733/714 79.51 0.89 674/668 74.39

M3 2.20 820/802 89.31 0.40 758/755 84.08

M4 2.72 810/788 87.75 1.39 722/712 79.29

D2

M1 1.92 5875/5762 68.20 0.36 4964/4946 58.54

M2 2.17 6775/6628 78.45 0.51 5895/5865 69.42

M3 3.16 7426/7191 85.11 1.04 6754/6684 79.11

M4 1.91 7001/6867 81.28 0.55 6333/6298 74.54

D3

M1 0.13 10284/10271 74.80 0.03 9182/9179 83.70

M2 0.42 11477/11429 93.14 0.17 10699/10681 87.04

M3 0.50 11983/11923 97.16 0.09 11388/11378 92.72

M4 0.32 10885/10850 88.42 0.16 10117/10101 82.32



The peptides confirmed by the BNP model 

represented more than 90% of other three 

methods

Overlap of peptides identified by the four methods.

M1: Cutoff based method; M2: PeptideProphet; 

M3: BNP model; M4: Nonparametric model.



Peptide identified by Mascot

• Majority of the proposed filter methods for Mascot have been 
based on the ion score and thresholds reported by this search 
engine.
– mass accuracy–based threshold (MATH) (J. Proteome Res. 2005, 4, (4), 1353-1360.)

– empirical Mascot homology threshold (MHT) (Mol. Cell. Proteomics 2008, 7, (5), 962-
970.)

– transformed E-value (Biol. Direct 2007, 2, (26).)

• The *.dat files output by Mascot contain extensive information.

• The Mascot identity threshold 

(MIT) can control the FDR of 

search results strictly.

– low sensitivity

– lost a great deal of true results



Combination of new features improves 

peptide identification by Mascot in 

shotgun proteomics

On the basis of target-decoy search strategy

Introduce new features to improve the discriminant

power of the Mascot search score

Apply robust filter methods to improve the sensitivity 

of result validation

Improve the filter process
of Mascot search results



New features to improve the discriminant 
power of the Mascot search score

• Define the delta score for Mascot 

– ΔS = 1-Score2/Score1

• Filtration of Mascot search results on the Score-ΔS plane
– The cutoff based method

– linear discriminate function (LDF) filtering boundary

△
S

Filter boundaries derived from Mascot identity threshold (MIT), cutoff-based method, 

and LDF model for LTQ-FT control data set



16.5%

57.1%

27.3%

7.1%

Application of BNP model to validate Mascot 

database search results

• A total of 28 features are combined by BNP model to improve the 

validation of database search results for Mascot searched files

• The BNP model validated more correctly identified peptides than the 

other three methods.

Plot figures of the number of correctly identified peptides vs. the estimated FDR on LTQ control 

data set (D2, left) and FT/LTQ control data set (D4, right).



• Determination of the filtering criteria for the Score-ΔS two dimension 

feature space was more sensitive than that for the Mascot score;

• The BNP model yielded approximately up to 64% more total results than 

Mascot threshold methods

Data set Methoda

Expected FDR = 5% Expected FDR = 1%
Confirmed

Peptides / More

than MIT (%)

Non-redundant

Peptides / More

than MIT (%)

Confirmed

peptides / More

than MIT (%)

Non-redundant

peptides / More

than MIT (%)

LTQ

M1 12,309/0.00 2,071/0.00 10,199/0.00 1,787/0.00

M2 16,586/34.75 2,824/36.36 14,375/40.95 2,425/35.70

M3 16,931/37.55 2,903/40.17 14,462/41.80 2,440/36.54

M4 17,144/39.28 2,964/43.12 14,683/43.97 2,465/37.94

M5 19,311/56.89 3,458/66.97 16,632/63.07 2,777/55.40

LTQ-FT

M1 75,041/0.00 4,636/0.00 58,261/0.00 3,741/0.00

M2 102,270/36.29 5,829/25.73 79,359/36.21 4,559/21.87

M3 101,337/35.04 10,211/120.25 73,999/27.01 5,994/60.22

M4 101,413/35.14 10,230/120.66 78,275/34.35 6,699/79.07

M5 117,886/57.10 11,812/154.79 88,459/51.83 6,966/86.21

a: M1, MIT; M2, MATH; M3, cutoff - based method; M4, LDF model; M5, BNP model.

Comparative evaluation of filter methods on 

complex data sets
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Evaluation of the effects of decoy design, 
search strategy, and mass tolerance on the 

accuracy and sensitivity of peptide 
identifications in shotgun proteomics



Target-decoy search strategy

Hypothesis：Incorrect Peptide-Sequence-Matches(PSMs) from 
target or decoy sequences are equally likely.

0 |{ , 1,2,..., } |

{ ( )}
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Elias, J.E. and S.P. Gygi, Nat Methods, 2007. 4(3): p. 207-214

Kall, L., et al., Nat Methods, 2007. 4(11): p. 923-925



Percolator- Improve the sensitivity of peptide identifications

Kall, L., et al., Nat Methods, 
2007. 4(11): p. 923-925
Brosch, M., et al., J Proteome 
Res, 2009. 8(6): p. 3176-81.

SEQUEST, LTQ, trypsin SEQUEST, LTQ, elastase SEQUEST, LTQ, chymotrypsin 

MASCOT, LTQ, trypsin MASCOT, LTQ-FT, trypsin 

q-value
accuracy?



Wide precursor mass tolerance may improve the 
sensitivity of peptide identification

Hsieh, E.J., et al., J Proteome Res, 2010. 9(2): p. 1138-1143

However, will the accuracy of FDR/q-value estimations be 
affected  if we broaden the precursor mass tolerance？

Joo, J.W., et al., J Proteome Res, 2010. 9(2): 1150-1156

1000 ppm-5 ppm filter

1000 ppm

3 Da, target-decoy 
with mass binning



Potential influencing factors

• Decoy design

• Search strategy

• Precursor mass tolerance

• Quality control (QC) method

We aim to find the appropriate decoy design, search 
strategy, and precursor mass tolerance to achieve both 

accurate and sensitive peptide identifications

Blanco, L., J.A. Mead, and C. Bessant, J Proteome Res, 2009. 8(4): p. 1782-1791
Wang, G., et al., Anal Chem, 2009. 81(1): p. 146-159
Timm, W., et al., Anal Chem, 2010. 82(10): p. 3977-3980
Higdon, R., et al., OMICS, 2005. 9(4): p. 364-379



Datasets

• D1 (8191 spectra): a protein standard dataset comes from a set of 
48 human proteins (Sigma, Universal Proteomics Standard Set 
UPS1). The sample was tryptic-digested. The raw data was 
generated by LTQ-FT mass spectrometry. 

• D2 (24403 spectra): a complex sample dataset comes from 
human liver tissue. The sample was tryptic-digested, and 
analyzed by LTQ-FT.

Brosch, M., et al., J Proteome Res, 2009. 8(6): p. 3176-3181



The workflow of 
q-value accuracy evaluation

D1：203 MASCOT searches



Methods
• Influence factors

– Decoy design

– Search strategy
• Separate vs. Composite search (SS vs. CS)

– Precursor mass tolerance
• 5ppm, 20ppm, 50ppm, 100ppm, 500ppm, 1Da, 2Da

– QC method
• Multiple features

– PPDistiller (PPD)：PTM and Peptide Distiller
– MP: MASCOT Percolator

• Single feature
– MIT: MASCOT identity threshold

– MHT: MASCOT homology threshold

• Metrics evaluating the accuracy of q-value estimation

• ANOVA and multiple comparison

2

{1,2,..., }

1
( ( ) ( ))

t

est i act i

i mt

RMSE q t q t
m 

 



PPDistiller (PPD)

• MP is limited to 
processing SS results

• PPDistiller

– 36 features

– Percolator

– Process SS and CS results

• PPDistiller can generate 
more accurate q-values

Figure S1A. The RMSEs of estimated q-values generated 
by MP and PPD for separate search results

MP PPD



PPD is better than MP for it can generate more accurate q-values,
RMSE increases with the increase of precursor mass tolerances

Figure S1B. Multiple comparison 
RMSE means of q-values generated by 
MP and PPD

Figure S1C. Multiple comparison RMSE 
means of q-values for the 2-factor 
interaction: QC method*Precursor mass 
tolerance



The q-value RMSEs for PPD, MHT and MIT

Decoy design
For SS results, REV and REVTP were 
better than other decoy designs
For CS results, there was no significant 
difference between different decoy 
designs except for REV

Search strategy
 Composite search was better than 
separate search

 The decoy design and search 
strategy effects were reproducible 
across three QC methods

SS CS

PPD

MHT

MIT



ANOVA analysis
Analysis of Variance of RMSE of esimated q-values generated by 

PPD,MHT,MIT(%), 2-factor interaction effects 

  Source 
Sum 

Sq. 
d.f. 

Mean 

Sq. 
F Prob>F 

  DecoyDesign 17.55  5  3.51  4.02  0.00  

  ParentMassTolerance 17.74  6  2.96  3.39  0.00  

  SearchStrategy 203.83  1  203.83  233.74  0.00  

  QualityControl 262.35  2  131.18  150.42  0.00  

  DecoyDesign*ParentMassTolerance 5.26  30  0.18  0.20  1.00  

  DecoyDesign*SearchStrategy 64.93  5  12.99  14.89  0.00  

  DecoyDesign*QualityControl 11.54  10  1.15  1.32  0.22  

  ParentMassTolerance*SearchStrategy 17.91  6  2.99  3.42  0.00  

  ParentMassTolerance*QualityControl 91.41  12 7.62  8.74  0.00  

  SearchStrategy*QualityControl 85.42  2  42.71  48.98  0.00  

  Error 149.99  172  0.87  
  

  Total 927.93  251        

 

Most of the two-factor interactions 
significantly affected the q-value accuracy 

Decoy design, search strategy, and precursor 
mass tolerance significantly affected the q-
value accuracy



Accuracy: decoy design

• REVTP was significantly better than RND and SHFTP

• Decoy design*Search strategy

• For SS results, REV and REVTP was significantly better than the 
stochastic methods (i.e. RND, RNDTP, SHF and SHFTP)

• For CS results,  except for REV, there was no significant difference 
between the other five decoy designs



Accuracy: search strategy

 CS was significantly better than SS . This effect was reproducible 
across different decoy designs (except for REV), mass tolerances and 
QC methods
 CS minimized the differences between different decoy designs, 
and eliminated the differences between different mass tolerances



Accuracy: precursor mass tolerance

 Narrow mass tolerance generated more 
accurate q-value estimations, specially for 
SS and PPD
 For CS, precursor mass tolerance didn’t 
affected the q-value accuracy
 For MHT and MIT, precursor mass 
tolerance didn’t affected the q-value 
accuracy



Summary
q-value accuracy evaluation

• Composite search is better than separate search. It 
can minimize or eliminate the differences between 
different decoy designs and precursor mass tolerances

• For composite search, except for REV, the other five 
make no difference. In separate search, REV and 
REVTP are better than the stochastic methods

• For composite search, precursor mass tolerance 
doesn’t affected the q-value accuracy; For SS and PPD, 
narrow precursor mass tolerance can generate more 
accurate q-values



The sensitivity comparison

• D2 (24403 spectra)

– Human liver tissue

– Tryptic-digested

– LTQ-FT

• QC method: PPD, MP

– Decoy design

– Search strategy

– Precursor mass tolerance



Sensitivity: decoy design

For MP and PPD (either in SS or CS mode),
different decoy designs achieved similar or 
at least compatible sensitivity, especially 
when q-value < 0.1

Parent mass tolerance：20 ppm

MP

PPD, SS

PPD, CS



Sensitivity: search strategy

 PPD achieved similar sensitivity with MP
More peptide identifications were obtained from CS results 
when q-value > 0.1；
When q-value < 0.1, CS and SS made no difference

Decoy design：REVTP
Parent mass tolerance：20 ppm

PPD, CS
MP

PPD, SS



Sensitivity: precursor mass tolerance

 The sensitivity improved with the 
wide precursor mass tolerance. E.g. 
when q-value < 1%, when setting at 2 
Da, 33% more peptides were 
obtained compared with 20 ppm, 
and about 5-fold more peptides were 
obtained compared with 5 ppm

 The mass error distribution 
indicated the main contributions to 
the peptide identifications might 
come from the spectra with miss-
assigned monoisotopic masses

QC method: PPD
Search strategy: CS
Decoy design：REVTP



Conclusions

• For high mass accuracy data, when PPDistiller is applied
– Reversing tryptic peptide (REVTP) is recommended for 

tryptic-digested sample data, because different decoy 
designs achieved similar or at least compatible sensitivity, 
but REVTP generated more accurate estimated q-values

– Composite search is recommended, because it generated 
more accurate q-values without compromising the 
sensitivity

– Reasonable wide precursor mass tolerance is 
recommended, because the sensitivity improved with wide 
precursor mass tolerances, and the precursor mass 
tolerance didn’t affected the accuracy of estimated q-values
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